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Figure 1. Dependence of the specific resistance of mercury S .
on temperature. Retrieved from: https://xreferat.com upervisor.
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collecting information from
available databases

preliminary processing according to methods
used in the industry machine learning

select only those
characteristics that
most affect
superconductivity

creation a graphical interface
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modeling based on various types of regression
analysis, decision trees and neural networks.




A random forest was created for
high-temperature and low-temperature
superconductors. R2_score (coefficient
of determination) indicates whether
successfully obtained traces confirm

the model.

To create these Decision trees, it was
necessary to divide the entire database into

the corresponding critical temperatures:

Up to 2K for low-temperature and higher

for high-temperature superconductors.
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Figure.2 Training set of random forest for
“high-Tc” superconductors
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Figure 3 Training set of random forest for
“low-Tc” superconductors



To predict the critical temperature of new potential

superconductors of any type, a neural network was created.

The process of model training is shown in figure 4, from which

you can make a conclusion about the convergence of the model.
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Figure 8

Figure 9

The true critical temperature of a substance:

YbBa2Cu2.9827n.01806.9 = 85.1K
La.425Nd4Sr175Cul04 =25 K




Parameters most important for formation of
superconducting properties (according to this model):

3:,:3 mean_CovalentRadius i’v% frac_sValence
3¢ mean_NsValence 3¢ frac_dValence
3x mean_NdValence 3¢ mean_NUnfilled

3¢ Comp_L2Norm 3¢ mean_MendeleevNumber
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Why it is




Unfortunately, the correlation coefficient
appeared to be small, which means that linear
regression is not suitable for prediction the critical
temperature of superconductors.

The highest coefficient was obtained for high-
temperature superconductors:
Y['Tc'].corr(X['mean_NUnfilled’]):

-0.4663574740436221
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Conclusions

The work deals with one of the most promising materials - superconductors. The
result of the project was a set of machine learning models (linear regression, random

forest, neural network), which allow determining the influence of various physical

properties of compounds on the temperature of the superconducting transition with the

possibility of predicting this characteristic based on the chemical composition and
crystal structure of the compound.

This approach makes it possible to significantly accelerate the search for materials

with superconducting properties.




Thank you for attention!
You are welcome with
guestions




